



#### Math and Computing Foundations of Software Engineering

#### May 15-28, 2017

Gleb Radchenko, South Ural State University Andrey Sozykin, Ural Federal University

## **WELCOME TO the URALS**

You are on the border between Europe and Asia





## There is the place where meteorite fell

#### **WELCOME TO the URALS**

#### NATIONAL RESEARCH SOUTH URAL STATE UNIVERSITY









# Mathematical and computational foundations of software engineering

#### **Courses:**

- Modern concepts of distributed software systems engineering
- Mathematical Foundations of Software Engineering
- Fundamentals of Information Security
- Self-Management
- Modern Database Systems
- Data Mining in Software Engineering

#### **Students: School Schedule – week 1**

| Day                      | Time            | Activity                                                    | Responsible person                        |  |
|--------------------------|-----------------|-------------------------------------------------------------|-------------------------------------------|--|
| SUN 14 <sup>th</sup> May | Arrival time    |                                                             |                                           |  |
| a con a th a c           | 10:00 - 13:00   | Introduce the project and<br>Introduction to School         | Gleb Radchenko                            |  |
|                          | 14:00 - 17:00   | Excursion to supercomputer simulation laboratory            | Pavel Kostenetskii                        |  |
| TUE 16th May             | 9:00 - 17:00    | Modern concepts of distributed software systems engineering | Gleb Radchenko                            |  |
| WED 17th May             | 9:00 - 17:00    | Mathematical Foundations of<br>Software Engineering         | Valentin Golodov                          |  |
| THU - FRI<br>18-19th May | 9:00 - 17:00    | Fundamentals of Information<br>Security (I-II)              | Franck Leprévost<br>(invited lector, LUX) |  |
| SAT 20th May             | Social activity |                                                             |                                           |  |
| SUN 21th May             | 12:00           | Transfer to Ekaterinburg                                    | Gleb Radchenko,<br>Andrey Sozykin         |  |
|                          |                 |                                                             | 5                                         |  |

#### **Students: School Schedule – week 2**

| Day              | Time          | Activity                                        | Responsible person                |
|------------------|---------------|-------------------------------------------------|-----------------------------------|
| MON, 22th<br>May | 9:00 – 17:00  | Self-Management                                 | Ivan Zamoshchansky                |
|                  |               |                                                 |                                   |
|                  | 10:00 - 13:00 | Meeting with representatives of the IT industry | Andrey Sozykin                    |
| TUE, ZSth May    | 14:00 - 17:00 | Transfer to Chelyabinsk                         | Andrey Sozykin, Gleb<br>Radchenko |
|                  |               |                                                 |                                   |
| WEN, 24th<br>May | 9:00 - 17:00  | Modern Database Systems                         | Alina Latipova                    |
|                  |               |                                                 |                                   |
| THU, 25th May    | 9:00 - 17:00  | Data Mining in Software<br>Engineering          | Mikhail Zymbler                   |
|                  |               |                                                 |                                   |
| FRI, 26th May    | 9:00 – 16:00  | Poster Session joint research                   | Gleb Radchenko                    |
|                  |               |                                                 | 6                                 |

#### School schedule (staff)

| Day              | Ti                            | ime                  | Activity                                      | Responsible person                |
|------------------|-------------------------------|----------------------|-----------------------------------------------|-----------------------------------|
| SAT 20th<br>May  |                               | Arrival to C         | helyabinsk                                    | Gleb Radchenko                    |
| SUN 21th<br>May  | 12:00                         | Trans                | fer to Ekaterinburg                           | Andrey Sozykin                    |
| MON, 22th<br>May | 9:00 – 17:00                  | Se                   | Ivan Zamoshchansky                            |                                   |
| THE 23th         | 10:00 - 13:00                 | Expert group on      | national priorities and needs                 | Andrey Sozykin                    |
| May              | 14:00 – 17:00                 | Trans                | sfer to Chelyabinsk                           | Andrey Sozykin,<br>Gleb Radchenko |
| WEN, 24th<br>May | 9:00 - 14:00                  | Quality /            | Assurance Committee                           | Gleb Radchenko                    |
| THU, 25th<br>May | 9:00 - 12:00<br>13:00 - 17:00 | Administratio<br>Doc | on and Finance Committee<br>toral panel board | Gleb Radchenko                    |
| FRI, 26th<br>May | 9:00 - 14:00                  | Poster S             | Session joint research                        | Gleb Radchenko                    |

## Modern concepts of distributed software systems engineering

Course is provided by Assoc. Prof. Gleb Radchenko (South Ural State University (SUSU), Chelyabinsk, Russia).

This course is devoted to methods and organizational principles of engineering of modern distributed software systems using microservices architecture on a basis of containerized cloud platforms.



Course timing: May 16, 2017

Mode of study: Lectures: 6 hours, Practice: 4 hours, Total: 10 hours



## Modern concepts of distributed software systems engineering

| #   | Title                                                            | Duration | Summary                                                                                                                                                                                                                                                              |  |  |
|-----|------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Lec | Lectures                                                         |          |                                                                                                                                                                                                                                                                      |  |  |
| 1   | Introduction to<br>distributed<br>systems and<br>cloud computing | 2 hours  | Definitions and types of distributed systems. Classification of<br>distributed computing systems. Centralization and<br>decentralization. Issues of distributed computing systems. Basic<br>algorithms. Modern trends in distributed systems and cloud<br>platforms. |  |  |
| 2   | Microservices                                                    | 2 hours  | Microservices architecture. Comparing monolith and microservice<br>architecture approach. Patterns of microservice applications<br>engineering. Distributed data management in microservice<br>systems.                                                              |  |  |
| 3   | Containerization and DevOps                                      | 2 hours  | Containerization VS Virtualization. Docker – implementation of containerization approach. Stand-alone containers and container clusters.                                                                                                                             |  |  |
| Pra | ctice                                                            |          |                                                                                                                                                                                                                                                                      |  |  |
| 4   | Working with<br>distributed<br>computing<br>systems              | 4 hours  | Implementation and deployment of standalone container<br>application. Cloud deployment of containerized applications.<br>Scalability of multi-container applications.                                                                                                |  |  |

### Mathematical Foundations of Software Engineering

*Course is lectured* by **Assoc. Prof. Valentin Golodov** (SUSU, Chelyabinsk, Russia). His research interest area includes errorless computing, interval analysis, GPU computing.

*This course is devoted* to application of the mathematical methods in software engineering. Finite automata software verification technique will be introduced. Model checking software verification method, PROMELA verification modeling language and SPIN verification software package will be seen.



Course timing: May 17, 2017

Mode of study: Lectures: 6 hours, Practice: 4 hours, Total: 10 hours

## Mathematical Foundations of Software Engineering

| #   | Title                                                                        | Duration | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|-----|------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Le  | Lectures                                                                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 1   | Introduction to<br>mathematical<br>foundations of<br>software<br>engineering | 2 hours  | Mathematical foundations of software<br>engineering:Boolean logic, first-order logic, models of<br>first-order logic. Introduction to program verification,<br>applications in Software Engineering. Completeness<br>Theorem. Regular expressions, regular sets, finite-state<br>machines, and applications in Software Engineering.<br>Graph Theory, graph algorithms. Statecharts, Petri Nets<br>and their role in Software Engineering. |  |  |  |
| 2   | Finite state<br>machines                                                     | 2 hours  | Finite State Machines as technique for modeling the states and transitions of a software system.                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 3   | Verification of software                                                     | 2 hours  | Model checking.PROMELA (Process or Protocol Meta Language).                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Pra | actice                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 4   | Verifying a model of software                                                | 4 hours  | Verification of model using model checking technique and SPIN model checker.                                                                                                                                                                                                                                                                                                                                                               |  |  |  |

#### **Fundamentals of Information Security**

*Course is lectured* by Prof. Dr. Franck Leprevost (University of Luxembourg) His research interest area includes Algorithmic number Theory, Cryptology.

*This course is devoted* to Introduction to Information Security, Risk Management, Operating System Security, Access Control, Encryption, Application Security.

Course timing: May 18-19, 2017

Mode of study: Lectures: 10 hours, Practice: 10 hours, Total: 20 hours



#### **Self-Management**

Course is lectured by business couch and candidate of philosophical sciences **Ivan** Zamoshchansky (Ural State University, Ekaterinburg, Russia)

*This course is devoted* to methods and fundamentals of organization of scientific and everyday activity.

Course timing: May 22, 2017

Mode of study: Seminar: 10 hours



#### Self-Management

| # | Title                                                       | Duration | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|-------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Freedom<br>and self-<br>organization<br>in everyday<br>life | 1 hours  | Productive activities. Freedom, authenticity, and proactivity. The relationship of discipline and freedom. Articulating life's mission and core social roles.<br>Exercise: «Build the plan of your research career».                                                                                                                                                                                                                                                     |
| 2 | Technology<br>planning                                      | 2 hours  | Pitfalls and time sinks. Quantification and the laws of time.<br>Features of the scientific career.<br>Exercise: «Planning of the week» (individual presentation and<br>feedback).                                                                                                                                                                                                                                                                                       |
| 3 | Software for planning                                       | 2 hours  | Overview of software for planning and organizing your work.<br>Using the software to create the week plan.                                                                                                                                                                                                                                                                                                                                                               |
| 4 | Communica<br>tion in the<br>group                           | 2 hours  | Group dynamics. The structure of a small social group. The laws<br>of social communications. Techniques of self-presentation in the<br>group. Ways of organizing work in a small social group.<br>Negotiation and conflict situation in professional activity and<br>communication. Technology of conflict solution in<br>communication.<br>Case studies: 1) «Conflict in a team» 2) «The conversation with a<br>supervisor» 3) Business game for the group interaction. |

#### **Modern Database Systems**

*Course is lectured* by Assoc. Prof. Alina Latipova (SUSU, South Ural State University, Chelyabinsk, Russia). Her research interests include enterprise information systems and operation research.

*Course is devoted* to modern technologies of database management systems (NoSQL, parallel, columnoriented, graph databases) which can be beneficially used in Software Engineering.

Course timing: May 24, 2017

Mode of study: Lectures: 6 hours, Practice: 4 hours, Total: 10 hours



#### **Modern Database Systems**

| #   | Title                        | Duration | Summary                                           |
|-----|------------------------------|----------|---------------------------------------------------|
| Lec | tures                        |          |                                                   |
| 1   | Overview of modern           | 2 hours  | Classification of modern DBMS, market analysis,   |
| Ŧ   | DBMS                         |          | challenges of modern times                        |
|     |                              | 2 hours  | Fundamentals of database and schema design for    |
|     | Deletionalus NaCO            |          | relational DBMS, schema normalization, properties |
| 2   | Relational vs. NoSQL<br>DBMS |          | of transactions. Overview of modern NoSQL         |
|     |                              |          | DBMS, pros and cons of NoSQL, classification of   |
|     |                              |          | NoSQL DBMS, CAP theorem, ACID vs. BASE            |
| า   | Document,column-             | 2 hours  | Main features, advantages and drawbacks           |
| 3   | oriented, graph DBMS         | Znours   |                                                   |
| Pra | ctice                        |          |                                                   |
|     |                              |          | Developing different types of data structure      |
| 1   | Modern DBMS                  | 4 hours  | (normalized relational, JSON/BSON, XML),          |
|     |                              |          | retrieving data using queries                     |
|     |                              |          |                                                   |

#### **Data Mining in Software Engineering**

Course is lectured by Assoc. Prof. Mikhail Zymbler (South Ural State University, Chelyabinsk, Russia). His research interests include parallel algorithms for data mining, parallel database systems.

Course devoted to methods, algorithms and software to discover hidden knowledge from data involved in Software Engineering.

Course timing: May 25, 2017

Mode of study: Lectures: 4 hours, Practice: 6 hours, Total: 10 hours



#### **Data Mining in Software Engineering**

| #   | Title                                     |         | Duration                                              | Summary                                                                                   |
|-----|-------------------------------------------|---------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Leo | ctures                                    |         |                                                       |                                                                                           |
| 1   | Introduction to<br>data mining            | 1 hour  | Big Data phenc<br>as a process. A<br>Engineering.     | menon. Notion of Data Mining. Data Mining oplications of Data mining in Software          |
| 2   | Mining<br>frequent<br>patterns            | 1 hour  | Market basket<br>rules. Generati                      | problem, support, confidence, association<br>ng association rules from frequent itemsets. |
| 3   | Classification                            | 1 hour  | Learning step,<br>classifier accur<br>Classification. | classification step, training set, test set,<br>acy. Decision trees. k-Nearest-Neighbor   |
| 4   | Clustering                                | 1 hour  | k-Means cluste<br>clustering.                         | ring. Agglomerative and divisive hierarchical                                             |
| Pra | actice                                    |         |                                                       |                                                                                           |
| 1   | KNIME basics                              | 1 hour  | Basics of KNIM mining.                                | E, open-source stand-alone package for data                                               |
| 2   | Data mining in<br>Software<br>Engineering | 5 hours | Solving typical scope of Softw                        | data mining problems on given datasets from<br>are Engineering using KNIME package.<br>18 |

#### **Preparation and School Schedule**

| # | Activity                                                                             | Deadline    |
|---|--------------------------------------------------------------------------------------|-------------|
| 1 | Acquire a list of participants from all partner universities<br>(students and staff) | February 28 |
| 2 | Issue formal invitations for participants                                            | March 15    |
| 3 | Provide information for traveling and accommodation                                  | March 15    |
| 3 | Acquire Russian visa                                                                 | April 15    |
| 4 | Arrival to Chelyabinsk                                                               | May 14      |
| 5 | Transfer to Yekaterinburg                                                            | May 21      |
| 6 | Transfer back to Chelyabinsk                                                         | May 23      |
| 7 | School Ends                                                                          | May 26      |



## **Transfer to Chelyabinsk**

The best way to get to Chelyabinsk, is to book a flight through Moscow or Saint Petersburg

![](_page_19_Figure_2.jpeg)

#### **South Ural State University Location**

![](_page_20_Picture_1.jpeg)

http://www.susu.ru/en/university-campus

#### Accomodation

Челябинский зоопарк 🌱

PYAa

ul. Enge

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

#### See you in May!

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

#### **CHELYABINSK**

#### YEKATERINBURG

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)